

String Matching

including Horspool’s algorithm

by Saadiq Moolla

Introduction

 Given the problem:

find the pattern “not” in a substring
of the text “nobody noticed him”

 How could we do this?

Brute Force Solution

1. Align the pattern against the first letters of
the text.

2. Compare the characters from left to right.

3. If a mismatch occurs, shift the pattern to the
right and compare the characters.

4. If no mismatch occurs, a substring is found.

5. The algorithm can stop or continue
searching for more substrings.

N O B O D Y N O T I C E D H I M
N O T N O TN N

Evaluation

 Worst case solution is not very efficient.
 O (nm)

 Typical word search is much more efficient
because shifting occurs must sooner.

 Search time is linear…

 … but there are more efficient algorithms.

Horspool’s Algorithm

 Starting at the beginning of the text,
compare the last letter of the pattern with
the corresponding letter in the text.

 Continue matching characters, but if a
mismatch is found, we want to make as
large a shift as possible without missing any
possibilities.

 Horspool’s Algorithm determines the size of
this shift. If the character c in the text
caused the mismatch…

Case 1

If there is no c in the pattern, then it can be
safely shifted its entire length:

N O B O D Y N O T I C E D H I M
N O T

N O T

Case 2

If there are occurances of c in the pattern,
but it is not the last one there, then the shift
should align the rightmost occurance of c in
the pattern with the c in the text:

N O B O D Y N O T I C E D H I M
N O T

N O T

Case 3
If c happens to be the last character of the
sequence, but there are no other occurences
of c, the pattern can be shifted by its entire
length.

Case 4
If c happens to be the last character of the
sequence and there are other occurences of
c, the pattern must be shifted so that the
rightmost occurance of c (excluding the last
one) is aligned with the text’s c.

The Shift Table

 For a pattern of length m, the amount the
pattern can be shifted if c in the text
mismatches is:

– m, if c is not amongst the first m – 1 characters of
the pattern

– the distance from the rightmost c amongst the first
m – 1 characters of the pattern to its last character

Computing the Shift Table

 Set all entries to the pattern’s length, m
 Scan the pattern left to right overwriting the

entry for the character j with the value m – 1 –
j

The not Shift Table

333123333

ZTONDCBA

The Horspool Search

N O B O D Y N O T I C E D H I M
N O T N O TN O TN O T

Evaluation

 Although the worst and average times are still
of the same efficiency class, the Horspool
Algorithm is obviously faster on average.

 Good example of a space-time trade off.

	String Matching
	Introduction
	Brute Force Solution
	PowerPoint Presentation
	Evaluation
	Horspool’s Algorithm
	Case 1
	Case 2
	Case 3
	The Shift Table
	Computing the Shift Table
	The not Shift Table
	The Horspool Search
	Slide 14

